

String Matching

including Horspool’s algorithm

by Saadiq Moolla

Introduction

 Given the problem:

find the pattern “not” in a substring
of the text “nobody noticed him”

 How could we do this?

Brute Force Solution

1. Align the pattern against the first letters of
the text.

2. Compare the characters from left to right.

3. If a mismatch occurs, shift the pattern to the
right and compare the characters.

4. If no mismatch occurs, a substring is found.

5. The algorithm can stop or continue
searching for more substrings.

N O B O D Y N O T I C E D H I M
N O T N O TN N

Evaluation

 Worst case solution is not very efficient.
 O (nm)

 Typical word search is much more efficient
because shifting occurs must sooner.

 Search time is linear…

 … but there are more efficient algorithms.

Horspool’s Algorithm

 Starting at the beginning of the text,
compare the last letter of the pattern with
the corresponding letter in the text.

 Continue matching characters, but if a
mismatch is found, we want to make as
large a shift as possible without missing any
possibilities.

 Horspool’s Algorithm determines the size of
this shift. If the character c in the text
caused the mismatch…

Case 1

If there is no c in the pattern, then it can be
safely shifted its entire length:

N O B O D Y N O T I C E D H I M
N O T

N O T

Case 2

If there are occurances of c in the pattern,
but it is not the last one there, then the shift
should align the rightmost occurance of c in
the pattern with the c in the text:

N O B O D Y N O T I C E D H I M
N O T

N O T

Case 3
If c happens to be the last character of the
sequence, but there are no other occurences
of c, the pattern can be shifted by its entire
length.

Case 4
If c happens to be the last character of the
sequence and there are other occurences of
c, the pattern must be shifted so that the
rightmost occurance of c (excluding the last
one) is aligned with the text’s c.

The Shift Table

 For a pattern of length m, the amount the
pattern can be shifted if c in the text
mismatches is:

– m, if c is not amongst the first m – 1 characters of
the pattern

– the distance from the rightmost c amongst the first
m – 1 characters of the pattern to its last character

Computing the Shift Table

 Set all entries to the pattern’s length, m
 Scan the pattern left to right overwriting the

entry for the character j with the value m – 1 –
j

The not Shift Table

333123333

ZTONDCBA

The Horspool Search

N O B O D Y N O T I C E D H I M
N O T N O TN O TN O T

Evaluation

 Although the worst and average times are still
of the same efficiency class, the Horspool
Algorithm is obviously faster on average.

 Good example of a space-time trade off.

	String Matching
	Introduction
	Brute Force Solution
	PowerPoint Presentation
	Evaluation
	Horspool’s Algorithm
	Case 1
	Case 2
	Case 3
	The Shift Table
	Computing the Shift Table
	The not Shift Table
	The Horspool Search
	Slide 14

